# Partition relations for linear orders in a non-choice context 03E02, 03E60, 05C63

# Thilo Weinert Hausdorff Research Centre for Mathematics, Bonn, Germany

Winterschool on Abstract Analysis, Section Set Theory & Topology, Hejnice, Sunday, 26<sup>th</sup> of January 2014, 10:00-10:35

#### Introduction

- 2 Results with the Axiom of Choice
- 3 Blass's theorem
- 4 Determinacy
- 5 Results without Choice



Thilo Weinert, Hausdorff Centre for MathenPartition relations for linear orders in a non-

#### Notation

$$\alpha \to (\beta, \gamma)^n \text{ means}$$
  
$$\forall \chi : [\alpha]^n \longrightarrow 2(\exists B \in [\alpha]^\beta \forall t \in [B]^n \chi(t) = 0$$
  
$$\forall \exists C \in [\alpha]^\gamma \forall t \in [C]^n \chi(t) = 1)$$

Thilo Weinert, Hausdorff Centre for MatherPartition relations for linear orders in a non-

Winterschool on Abstract Analysis, Section

# Fact (ZFC)

There is no linear order  $\varphi$  such that  $\varphi \to (\omega^*, \omega)^2$ .

#### Proof.

Suppose  $\varphi \to (\omega^*, \omega)^2$ . Let  $<_w$  be a well-order of  $\varphi$ . Let

$$\begin{split} \chi : [\varphi]^2 &\longrightarrow 2\\ \{x, y\}_< &\longmapsto \begin{cases} 0 \text{ iff } x <_w y\\ 1 \text{ else.} \end{cases} \end{split}$$

#### Notation

$$\alpha \to (\beta \lor \gamma, \delta)^n \text{ means}$$
  
$$\forall \chi : [\alpha]^n \longrightarrow 2(\exists B \in [\alpha]^\beta \forall t \in [B]^n \chi(t) = 0$$
  
$$\forall \exists C \in [\alpha]^\gamma \forall t \in [C]^n \chi(t) = 0$$
  
$$\forall \exists D \in [\alpha]^\delta \forall t \in [D]^n \chi(t) = 1)$$

Thilo Weinert, Hausdorff Centre for MatherPartition relations for linear orders in a non-

Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order  $\varphi$  such that  $\varphi \rightarrow (\omega^* + \omega, 4)^3$ .

Proof.

Well-order  $\varphi$  by  $<_w$ .

$$\chi : [\varphi]^3 \longrightarrow 2$$
$$\{x, y, z\}_{<} \longmapsto \begin{cases} 1 \text{ iff } y <_w x, z\\ 0 \text{ else.} \end{cases}$$

Thilo Weinert, Hausdorff Centre for MatherPartition relations for linear orders in a non-

#### Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order  $\varphi$  such that  $\varphi \rightarrow (\omega + \omega^*, 4)^3$ .

#### Proof.

Well-order  $\varphi$  by  $<_w$ .

$$\begin{split} \chi : [\varphi]^3 &\longrightarrow 2\\ \{x, y, z\}_< &\longmapsto \begin{cases} 1 \text{ iff } x, z <_w y\\ 0 \text{ else.} \end{cases} \end{split}$$

Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order  $\varphi$  such that  $\varphi \to (\omega + \omega^* \vee \omega^* + \omega, 5)^3$ .

#### Proof.

Well-order  $\varphi$  by  $<_w$ .

$$\chi : [\varphi]^3 \longrightarrow 2$$
  
$$\{x, y, z\}_{<} \longmapsto \begin{cases} 0 \text{ iff } x <_w y <_w z \lor z <_w y <_w x \\ 1 \text{ else.} \end{cases}$$

# Question (1971, Erdős, Milner, Rado, ZFC) Is there an order $\varphi$ such that $\varphi \rightarrow (\omega + \omega^* \vee \omega^* + \omega, 4)^3$ ?

# Theorem (1981, Blass, ZF)

For every continuous colouring  $\chi$  with dom $(\chi) = [{}^{\omega}2]^n$  there is a perfect  $P \subset {}^{\omega}2$  on which the value of  $\chi$  at an n-tuple is decided by its splitting type.

#### Definition

The splitting type of an *n*-tuple  $\{x_0, \ldots, x_{n-1}\}_{\leq_{\text{lex}}}$  is given by the permutation  $\pi$  of n-1 such that  $\langle \triangle(x_{\pi(i)}, x_{\pi(i)+1}) | i < n-1 \rangle$  is ascending.  $\triangle(x, y) := \min\{\alpha | x(\alpha) \neq y(\alpha)\}.$ 

#### Remark

For an n-tuple there are (n-1)! splitting types.

# Theorem (1981, Blass, ZF)

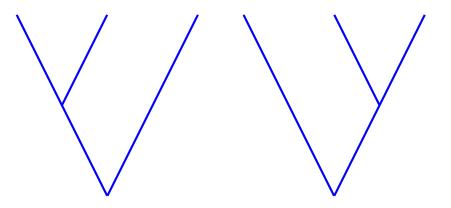
For every Baire colouring  $\chi$  with dom $(\chi) = [{}^{\omega}2]^n$  there is a perfect  $P \subset {}^{\omega}2$  on which the value of  $\chi$  at an n-tuple is decided by its splitting type.

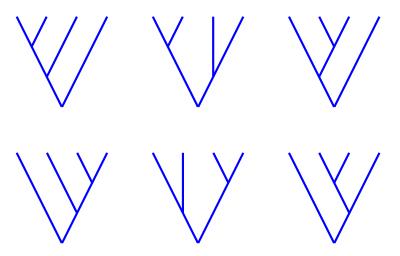
#### Definition

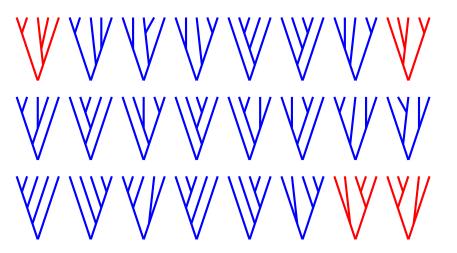
The splitting type of an *n*-tuple  $\{x_0, \ldots, x_{n-1}\}_{\leq_{\text{lex}}}$  is given by the permutation  $\pi$  of n-1 such that  $\langle \triangle(x_{\pi(i)}, x_{\pi(i)+1}) | i < n-1 \rangle$  is ascending.  $\triangle(x, y) := \min\{\alpha | x(\alpha) \neq y(\alpha)\}.$ 

#### Remark

For an n-tuple there are (n-1)! splitting types.







# Axiom (1962, Mycielski, Steinhaus)

(AD): Every two-player-game with natural-number-moves and perfect information of length  $\omega$  is determined.

# Axiom (1962, Mycielski, Steinhaus)

 $(AD_{\mathbb{R}})$ : Every two-player-game with real-number-moves and perfect information of length  $\omega$  is determined.

#### Observation (BP)

$$\langle {}^\omega 2, <_{\mathit{lex}} \rangle 
ightarrow (\langle {}^\omega 2, <_{\mathit{lex}} \rangle)_2^2.$$

# Observation (ZF)

There is no ordinal number  $\alpha$  such that  $\langle {}^{\alpha}2, <_{lex} \rangle \rightarrow (\omega^*, \omega)^3$ .

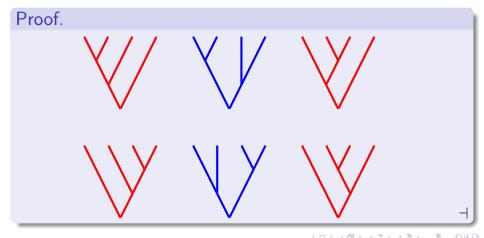
# Proposition (ZF + BP)

$$\langle {}^{\omega}2, <_{\mathit{lex}} \rangle 
ightarrow (\langle {}^{\omega}2, <_{\mathit{lex}} \rangle, 1 + \omega^* \lor \omega + 1)_2^3.$$

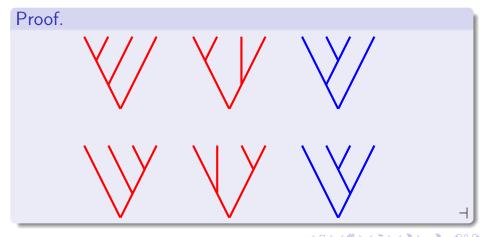
### Theorem (ZF)

There is no countable ordinal  $\alpha$  such that  $\langle {}^{\alpha}2, <_{lex} \rangle \rightarrow ({}^{\omega+1}2, \aleph_0)^3$ .

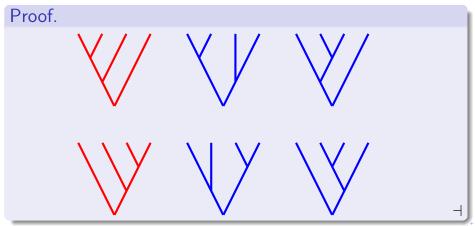
There is no ordinal number  $\alpha$  such that  $\langle \alpha 2, <_{lex} \rangle \rightarrow (\omega^* + \omega, 5)^4$ .



There is no ordinal number  $\alpha$  such that  $\langle \alpha 2, <_{lex} \rangle \rightarrow (\omega + \omega^*, 5)^4$ .

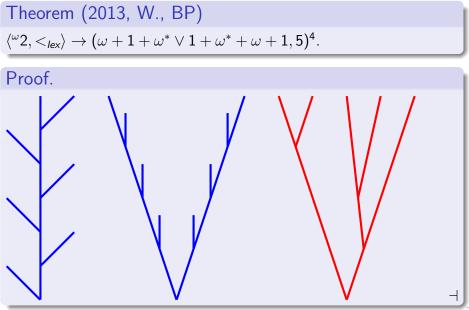


There is no ordinal number  $\alpha$  such that  $\langle {}^{\alpha}2, <_{lex} \rangle \rightarrow (\omega + \omega^* \lor \omega^* + \omega, 7)^4.$ 



Thilo Weinert, Hausdorff Centre for MatherPartition relations for linear orders in a non-

Winterschool on Abstract Analysis, Section

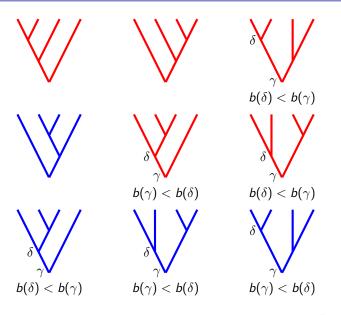


Thilo Weinert, Hausdorff Centre for MatherPartition relations for linear orders in a non-

Winterschool on Abstract Analysis, Section

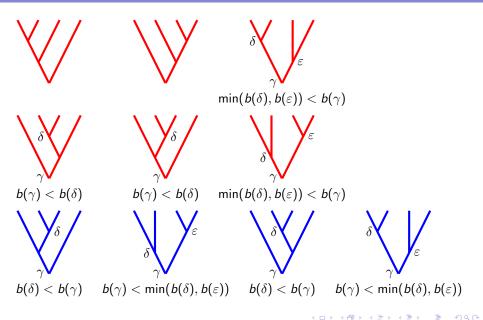
There is no countable ordinal number  $\alpha$  such that

$$\langle {}^{\alpha}2, <_{lex} \rangle \rightarrow (\omega + \omega^* \vee \omega^* + \omega, 6)^4.$$



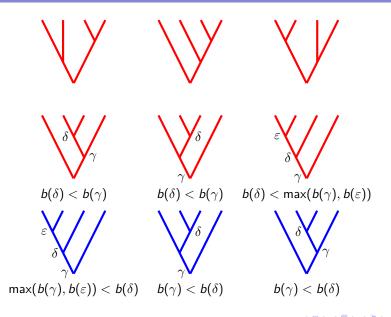
#### There is no countable ordinal number $\alpha$ such that

$$\langle {}^{\alpha}2, <_{\textit{lex}} \rangle \rightarrow (\omega + 2 + \omega^* \lor \omega^* + \omega, 5)^4.$$



#### There is no countable ordinal number $\alpha$ such that

$$\langle {}^{\alpha}2, <_{\textit{lex}} \rangle \rightarrow (\omega + \omega^* \vee 2 + \omega^* + \omega, 5)^4.$$



# Theorem (1964, Mycielski, ZF + AD) BP.

Theorem (Martin, ZF + AD)  

$$\omega_1 \rightarrow (\omega_1)_{2^{\aleph_0}}^{\omega_1}$$
.

Theorem (1976, Prikry,  $ZF + AD_{\mathbb{R}}$ )  $\omega \rightarrow (\omega)_2^{\omega}$ 

Conjecture (2013, W., 
$$ZF + AD_{\mathbb{R}}$$
)

$$\langle \omega_1 2, <_{\mathit{lex}} \rangle 
ightarrow (\omega + \omega^* \lor \omega^* + \omega, 6)^4.$$

Conjecture (2013, W., 
$$ZF + AD_{\mathbb{R}}$$
)  
 $\langle \omega_1 2, \langle \omega_1 2, \langle \omega_1 2, \langle \omega_2 + \omega_1 \rangle \rangle \rightarrow (\omega + 2 + \omega^* \vee \omega^* + \omega, 5)^4.$ 

Conjecture (2013, W., 
$$ZF + AD_{\mathbb{R}}$$
)  
 $\langle \omega_1 2, <_{lex} \rangle \rightarrow (\omega + \omega^* \vee 2 + \omega^* + \omega, 5)^4.$ 

Winterschool on Abstract Analysis, Section Thilo Weinert, Hausdorff Centre for MatherPartition relations for linear orders in a non-

# Thank you very much for your attention!

Thilo Weinert, Hausdorff Centre for MatherPartition relations for linear orders in a non-

Winterschool on Abstract Analysis, Section Thilo Weinert, Hausdorff Centre for MatherPartition relations for linear orders in a non-